Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.237
Filtrar
1.
Aging (Albany NY) ; 16(2): 1096-1110, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38180747

RESUMO

Neuroinflammation plays a key role in early brain injury (EBI) of subarachnoid hemorrhage (SAH), and NLRP3 inflammasome plays an important role in the development of neuroinflammation after SAH, but the mechanism of NLRP3 inflammasome activation after SAH is still unclear. TRPV1 is a non-selective calcium channel that is involved in the pathology of neuroinflammation, but its role in SAH has not been revealed. Our study showed that TRPV1 was significantly upregulated after SAH and was predominantly expressed in microglia/macrophages. Antagonism of TRPV1 was effective in ameliorating neurological impairment, brain edema, neuronal damage, and reducing the inflammatory response (evidenced by reducing the number of CD16/32 positive microglia/macrophages, inhibiting the expression of CD16, CD32, CD86, IL-1b, TNF-a and blocking NLRP3 inflammasome activation). However, this effect can be abolished by NLRP3 inflammasome antagonist MCC950. In vitro experiment confirmed that TRPV1 activated NLRP3 inflammasome by increasing intracellular calcium levels. In conclusion, TRPV1 mediates EBI after SAH via calcium/NLRP3, and TRPV1 is a potential therapeutic target after SAH.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Animais , Lesões Encefálicas/tratamento farmacológico , Cálcio/uso terapêutico , Cálcio da Dieta/uso terapêutico , Inflamassomos/metabolismo , Doenças Neuroinflamatórias , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/patologia , Camundongos , Ratos
2.
Sci Rep ; 14(1): 2277, 2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280926

RESUMO

We analyzed the correlation between the duration of electroencephalogram (EEG) recovery and histological outcome in rats in the acute stage of subarachnoid hemorrhage (SAH) to find a new predictor of the subsequent outcome. SAH was induced in eight rats by cisternal blood injection, and the duration of cortical depolarization was measured. EEG power spectrums were given by time frequency analysis, and histology was evaluated. The appropriate frequency band and recovery percentage of EEG (defined as EEG recovery time) to predict the neuronal damage were determined from 25 patterns (5 bands × 5 recovery rates) of receiver operating characteristic (ROC) curves. Probit regression curves were depicted to evaluate the relationships between neuronal injury and duration of depolarization and EEG recovery. The optimal values of the EEG band and the EEG recovery time to predict neuronal damage were 10-15 Hz and 40%, respectively (area under the curve [AUC]: 0.97). There was a close relationship between the percentage of damaged neurons and the duration of depolarization or EEG recovery time. These results suggest that EEG recovery time, under the above frequency band and recovery rate, may be a novel marker to predict the outcome after SAH.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Ratos , Animais , Hemorragia Subaracnóidea/patologia , Eletroencefalografia/métodos , Lesões Encefálicas/patologia , Modelos Animais de Doenças , Neurônios/patologia
3.
Free Radic Biol Med ; 210: 318-332, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052274

RESUMO

Iron accumulation is one of the most essential pathological events after subarachnoid hemorrhage (SAH). Ferroportin1 (FPN1) is the only transmembrane protein responsible for exporting iron. Hepcidin, as the major regulator of FPN1, is responsible for its degradation. Our study investigated how the interaction between FPN1 and hepcidin contributes to iron accumulation after SAH. We found that iron accumulation aggravated after SAH, along with decreased FPN1 in neurons and increased hepcidin in astrocytes. After knocking down hepcidin in astrocytes, the neuronal FPN1 significantly elevated, thus attenuating iron accumulation. After SAH, p-Smad1/5 and Smad4 tended to translocate into the nucleus. Moreover, Smad4 combined more fragments of the promoter region of Hamp after OxyHb stimulation. By knocking down Smad1/5 or Smad4 in astrocytes, FPN1 level restored and iron overload attenuated, leading to alleviated neuronal cell death and improved neurological function. However, the protective role disappeared after recombinant hepcidin administration. Therefore, our study suggests that owing to the nuclear translocation of transcription factors p-Smad1/5 and Smad4, astrocyte-derived hepcidin increased significantly after SAH, leading to a decreased level of neuronal FPN1, aggravation of iron accumulation, and worse neurological outcome.


Assuntos
Hepcidinas , Hemorragia Subaracnóidea , Humanos , Hepcidinas/genética , Hepcidinas/metabolismo , Astrócitos/metabolismo , Hemorragia Subaracnóidea/patologia , Ferro/metabolismo , Neurônios/metabolismo
4.
Biol Pharm Bull ; 47(1): 279-291, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38057100

RESUMO

The abnormal activation of the nuclear factor-kappa B (NF-κB)/nod-like receptor family-pyrin domain-containing 3 (NLRP3) signaling pathway is closely related to early brain injury after subarachnoid hemorrhage (SAH). Targeting the NLRP3-inflammasome has been considered an efficient therapy for the local inflammatory response after SAH. Tanshinone IIA (Tan IIA), a major component extracted from Salvia miltiorrhiza, has been reported to have anti-inflammatory effects. The aim of this study was to investigate the effect and mechanism of Tan IIA on early brain injury after SAH. In vivo SAH injury was established by endovascular perforation technique in Sprague-Dawley rats. Limb-placement test and corner turning test were used to measure the behavior. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, hematoxylin-eosin (H&E) staining, and immunofluorescence were used to evaluate the nerve damage. Real-time RT quantitative PCR (RT-qPCR) was used to quantify the levels of inflammatory factors. Western blot was performed for the activation of the NF-κB/NLRP3 pathway. An in vitro SAH model was used to validate the conclusion. We found that the neurobehavioral impairment and cerebral edema in SAH model rats given Tan IIA were alleviated. Further study demonstrated that Tan IIA could inhibit SAH-secondary neuronal apoptosis around hematoma and alleviate brain injury. Tan IIA down-regulated the expression of interleukin-6 (IL)-6, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor (TNF)-α, and inhibited the activation of NF-κB. And the overexpression of pro-inflammatory factors NLRP3, IL-1ß, and IL-18 induced after SAH was also reversed by Tan IIA. In conclusions, Tan IIA could inhibit the NF-κB/NLRP3 inflammasome activation to protect and ameliorate SAH-followed early brain injury, and may be a preventive and therapeutic strategy against SAH.


Assuntos
Abietanos , Lesões Encefálicas , Hemorragia Subaracnóidea , Ratos , Animais , Inflamassomos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/patologia , Ratos Sprague-Dawley , Lesões Encefálicas/patologia
5.
Transl Stroke Res ; 15(2): 476-494, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-36781743

RESUMO

Early brain injury (EBI) is the leading cause of poor prognosis for patients suffering from subarachnoid hemorrhage (SAH), particularly learning and memory deficits in the repair phase. A recent report has involved calcium/calmodulin-dependent protein kinase II (CaMKII) in the pathophysiological process underlying SAH-induced EBI. Alpha-asarone (ASA), a major compound isolated from the Chinese medicinal herb Acorus tatarinowii Schott, was proven to reduce secondary brain injury by decreasing CaMKII over-phosphorylation in rats' model of intracerebral hemorrhage in our previous report. However, the effect of ASA on SAH remains unclear, and the role of CaMKII in both acute and recovery stages of SAH needs further investigation. In this work, we first established a classic SAH rat model by endovascular perforation and intraperitoneally administrated different ASA doses (10, 20, and 40 mg/kg) 2 h after successful modeling. Then, the short- and long-term neurobehavioral performances were blindly evaluated to confirm ASA's efficacy against SAH. Subsequently, we explored ASA's therapeutic mechanism in both acute and recovery stages using histopathological examination, TUNEL staining, flow cytometry, Western-blot, double-immunofluorescence staining, and transmission electron microscopy (TEM) observation. Finally, KN93, a selective CaMKII inhibitor, was applied in oxyhemoglobin-damaged HT22 cells to explore the role of CaMKII in ASA's neuroprotective effect. The results demonstrated that ASA alleviated short- and long-term neurological dysfunction, reduced mortality and seizure rate within 24 h, and prolonged 14-day survival in SAH rats. Histopathological examination showed a reduction of neuronal damage and a restoration of the hippocampal structure after ASA treatment in both acute and recovery phases of SAH. In the acute stage, the Western-blot and flow cytometer analyses showed that ASA restored E/I balance, reduced calcium overload and CaMKII phosphorylation, and inhibited mitochondrion-involved apoptosis, thus preventing neuronal damage and apoptosis underlying EBI post-SAH. In the recovery stage, the TEM observation, double-immunofluorescence staining, and Western-blot analyses indicated that ASA increased the numbers of synapses and enhanced synaptic plasticity in the ipsilateral hippocampi, probably by promoting NR2B/CaMKII interaction and activating subsequent CREB/BDNF/TrkB signaling pathways. Furthermore, KN93 notably reversed ASA's neuroprotective effect on oxyhemoglobin-damaged HT22 cells, confirming CaMKII a potential target for ASA's efficacy against SAH. Our study confirmed for the first time that ASA ameliorated the SAH rats' neurobehavioral deterioration, possibly via modulating CaMKII-involved pathways. These findings provided a promising candidate for the clinical treatment of SAH and shed light on future drug discovery against SAH.


Assuntos
Derivados de Alilbenzenos , Anisóis , Benzilaminas , Lesões Encefálicas , Fármacos Neuroprotetores , Hemorragia Subaracnóidea , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/patologia , Cálcio/uso terapêutico , Oxiemoglobinas/uso terapêutico , Lesões Encefálicas/etiologia
6.
Brain Res ; 1822: 148666, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949309

RESUMO

Neuroinflammation induced by early brain injury (EBI) seriously affects the prognosis of patients after subarachnoid hemorrhage (SAH). Pyroptosis can aggravate inflammatory injury by promoting the secretion of inflammatory cytokines. Meanwhile, STAT3 plays a critical role in the inflammatory response of EBI after SAH. However, whether it plays a pyroptotic role in SAH is mainly unknown. This study aimed to explore the mechanism of STAT3 in pyroptosis in EBI after SAH. C57BL/6J mice were used to establish the SAH model. Brain tissues were collected at different time points for q-RT-PCR and western blot to detect the expression level of STAT3. After intracerebroventricular injection of STAT3 inhibitor S3I-201, they were divided into sham, SAH, SAH + Vehicle, and SAH + S3I-201. Then, the SAH grade, cerebral edema content, blood-brain barrier (BBB) damage, and neurological scores of mice in each group were detected. qRT-PCR and western blot were used to detect related genes and proteins, and enzyme-linked immunosorbent assay (ELISA) was used to detect the expression levels of IL-18 and IL-1ß. Immunofluorescence staining was used to observe the expression level of proteins. At the same time, S3I-201 was added to the primary neuron cells of the culture medium containing OxyHb to simulate the in vitro experiment, and the relevant indicators consistent with the in vivo experiment were detected. The expression of STAT3 was upregulated after SAH. Inhibition of STAT3 with S3I-201 attenuated neurological deficits, cerebral edema, and BBB damage after SAH. In addition, S3I-201 can also reduce the expression of pyroptosis-related inflammasomes such as GSDMD, NLRP3, Caspase 1, and AIM2 after SAH and the neurological damage caused by IL-18 and IL-1ß. Further studies have shown that STAT3 regulates pyroptosis by promoting the nuclear translocation of NF-κB p65. Our finding demonstrated that STAT3 regulates neuronal pyroptosis in EBI after SAH. Inhibition of STAT3 may be a potential target to attenuate the damage that triggers neuroinflammation after SAH.


Assuntos
Edema Encefálico , Lesões Encefálicas , Piroptose , Hemorragia Subaracnóidea , Animais , Camundongos , Edema Encefálico/etiologia , Edema Encefálico/metabolismo , Lesões Encefálicas/metabolismo , Proteínas de Ligação a DNA/metabolismo , Interleucina-18/metabolismo , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Fator de Transcrição STAT3/metabolismo , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia
7.
Animal Model Exp Med ; 7(1): 77-81, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38111348

RESUMO

The murine model of subarachnoid hemorrhage (SAH) is a valuable experimental tool for investigating molecular and cellular mechanisms, and the endovascular filament perforation technique can be used to simulate prominent pathophysiological features observed after human SAH; however, current validation methods for assessing an appropriate SAH model are limited. Here, we introduce a simple procedure for selecting a mouse model of diffuse SAH. SAH was induced in 24 mice using a standard filament perforation method. After confirming survival at 24 h, SAH was scored 0-1 based on T2*-weighted images on whole-brain magnetic resonance imaging (MRI) and visual surveillance of the cisterna magna (CM) through the dura mater. The CM-based SAH grading correlated well with a reference parameter defined by extracted brain (r2 = 0.53, p < 0.0001). The receiver operating characteristic curve revealed a sensitivity of 85% and a specificity of 91% for detecting diffuse SAH, with a similar area under the curve (0.89 ± 0.06 [standard error of the mean]) as the MRI-based grading (0.72 ± 0.10, p = 0.12). Our data suggest that confirming an SAH clot in the CM is a valuable way to select a clinically relevant diffuse SAH model that can be used in future experimental studies.


Assuntos
Procedimentos Endovasculares , Hemorragia Subaracnóidea , Humanos , Camundongos , Animais , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/patologia , Imageamento por Ressonância Magnética/métodos , Encéfalo/patologia , Espaço Subaracnóideo/patologia
8.
Discov Med ; 35(179): 1134-1146, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058079

RESUMO

BACKGROUND: Inflammation and oxidative stress (OS) are major causes of aneurysmal subarachnoid hemorrhage (aSAH)-induced early brain injury (EBI). Eriocitrin (EC), a flavonoid compound, has anti-inflammatory and antioxidant actions. However, there is still no relevant studies on the role of EC in SAH. Accordingly, this research aims to clarify the anti-OS and anti-inflammatory efficacy of EC in SAH. METHOD: Rat SAH model was established in vivo and administered with Eriocitrin (25 mg/kg). In vitro, BV2 cells were exposed to oxyhemoglobin (OxyHb) for 24 hours and pretreated with Eriocitrin (1 uM/mL, 2 uM/mL, 4 uM/mL) for 30 minutes. Water maze experiments and neurological function scores were conducted to assess cognitive and motor function. TdT-mediated dUTP Nick-End Labeling (TUNEL) staining was used to detect cortical cell apoptosis. Enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) were used to detect the inflammatory factors and malondialdehyde (MDA), as well as the expression of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px). Western blots were used to semi quantify nuclear factor erythroid-2-related factor 2 (Nrf2), nuclear factor-κB (NF-κB), dual specificity phosphatase 14 (DUSP14) expression. RESULTS: The findings suggest that EC (25 mg/kg) reduced SAH-induced central nervous system (CNS) damage, neuronal apoptosis, inflammatory reactions and OS. Regarding a mechanistic study, EC enhanced Nrf2 and NF-κB by increasing DUSP14 activation, thereby reducing the inflammatory cytokines interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6. In addition, EC decreased MDA while markedly elevating SOD and enhancing GSH-px. Furthermore, specifically inhibiting DUSP14 expression via using protein-tyrosine-phosphatase (PTP) inhibitor IV, neutralized the protective action of EC and aggravated inflammation and OS. In vitro experiments of OxyHb-induced BV2 cells revealed that EC promoted Nrf2 while markedly suppressing NF-κB by increasing DUSP14 activation, thereby reducing the concentrations of the above inflammatory cytokines. Moreover, EC decreased MDA while evidently increasing SOD and GSH-px. CONCLUSION: In summary, this paper lays a theoretical grounding for EC treatment of SAH-induced inflammatory reactions and OS by regulating DUSP14.


Assuntos
NF-kappa B , Hemorragia Subaracnóidea , Ratos , Animais , NF-kappa B/metabolismo , NF-kappa B/farmacologia , NF-kappa B/uso terapêutico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/farmacologia , Fator 2 Relacionado a NF-E2/uso terapêutico , Ratos Sprague-Dawley , Estresse Oxidativo , Inflamação/tratamento farmacológico , Inflamação/patologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Superóxido Dismutase/uso terapêutico
9.
J Neuroimmune Pharmacol ; 18(4): 628-639, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37919457

RESUMO

Glycoprotein non-metastatic melanoma protein B (GPNMB) got its name from the first discovery in a cell line of non-metastatic melanoma. Later studies found that GPNMB is widely expressed in various tissues and cells of the human body, most abundant in neural tissue, epithelial tissue, bone tissue, and monocyte-macrophage system. GPNMB has been shown to have anti-inflammatory effects in a variety of neurological diseases, however, it has not been reported in subarachnoid hemorrhage (SAH). Male CD-1 mice were used and intra-arterial puncture method was applied to establish the SAH model. Exogenous recombinant GPNMB (rGPNMB) was injected intracerebroventricularly 1 h after SAH. SAH grading, brain edema and blood-brain barrier (BBB) integrity were quantified, and neurobehavioral tests were performed to evaluate the effect of GPNMB on the outcome. Dorsomorphin, the selective inhibitor on AMPK was introduced to study the downstream signaling through which the GPNMB works. Furthermore, western blot, immunofluorescence staining and ELISA were utilized to confirm the signaling. After SAH, GPNMB expression increased significantly as a result of the inflammatory response. GPNMB was expressed extensively in mouse microglia, astrocytes and neurons. The administration of rGPNMB could alleviate brain edema, restore BBB integrity and improve the neurological outcome of mice with SAH. GPNMB treatment significantly magnified the expression of p-AMPK while p-NFκB, IL-1ß, IL-6 and TNF-α were suppressed; in the meantime, the combined administration of GPNMB and AMPK inhibitor could decrease the intensity of p-AMPK and reverse the quantity of p-NFκB and the above inflammatory cytokines. GPNMB has the potential of ameliorating the brain edema and neuroinflammation, protecting the BBB and improving the neurological outcome, possibly via the AMPK/NFκB signaling pathway.


Assuntos
Edema Encefálico , Melanoma , Hemorragia Subaracnóidea , Ratos , Camundongos , Masculino , Humanos , Animais , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Proteínas Quinases Ativadas por AMP/uso terapêutico , Edema Encefálico/tratamento farmacológico , Doenças Neuroinflamatórias , Ratos Sprague-Dawley , Transdução de Sinais , Glicoproteínas , Glicoproteínas de Membrana/farmacologia , Glicoproteínas de Membrana/uso terapêutico
10.
Free Radic Biol Med ; 208: 555-570, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717795

RESUMO

Ferroptosis is a novel form of cell death that plays a critical role in the pathological and physiological processes of early brain injury following subarachnoid hemorrhage. Melatonin, as the most potent endogenous antioxidant, has shown strong protective effects against pathological changes following subarachnoid hemorrhage, but its impact on ferroptosis induced by subarachnoid hemorrhage remains unexplored. In our study, we established a subarachnoid hemorrhage model in male SD rats. We found that subarachnoid hemorrhage induced changes in ferroptosis-related indicators such as lipid peroxidation and iron metabolism, while intraperitoneal injection of melatonin (40 mg/kg) effectively ameliorated these changes to a certain degree. Moreover, in a subset of rats with subarachnoid hemorrhage who received pre-treatment via intravenous injection of the melatonin receptor antagonist Luzindole (1 mg/kg) and 4P-PDOT (1 mg/kg), we found that the protective effect of melatonin against subarachnoid hemorrhage includes inhibition of lipid peroxidation and reduction of iron accumulation depended on melatonin receptor 1B (MT2). Furthermore, our study demonstrated that melatonin inhibited neuronal ferroptosis by activating the NRF2 signaling pathway, as evidenced by in vivo inhibition of NRF2. In summary, melatonin acts through MT2 and activates NRF2 and downstream genes such as HO-1/NQO1 to inhibit ferroptosis in subarachnoid hemorrhage-induced neuronal injury, thereby improving neurological function in rats. These results suggest that melatonin is a promising therapeutic target for subarachnoid hemorrhage.


Assuntos
Lesões Encefálicas , Ferroptose , Melatonina , Hemorragia Subaracnóidea , Ratos , Masculino , Animais , Melatonina/farmacologia , Melatonina/uso terapêutico , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ratos Sprague-Dawley , Receptores de Melatonina , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/patologia , Lesões Encefálicas/metabolismo , Ferro/uso terapêutico
11.
Cell Commun Signal ; 21(1): 264, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770901

RESUMO

BACKGROUND: The poor prognosis of subarachnoid hemorrhage (SAH) is often attributed to neuroinflammation. The cGAS-STING axis, a cytoplasmic pathway responsible for detecting dsDNA, plays a significant role in mediating neuroinflammation in neurological diseases. However, the effects of inhibiting cGAS with the selective small molecule inhibitor RU.521 on brain injury and the underlying mechanisms after SAH are still unclear. METHODS: The expression and microglial localization of cGAS following SAH were investigated with western blot analysis and immunofluorescent double-staining, respectively. RU.521 was administered after SAH. 2'3'-cGAMP, a second messenger converted by activated cGAS, was used to activate cGAS-STING. The assessments were carried out by adopting various techniques including neurological function scores, brain water content, blood-brain barrier permeability, western blot analysis, TUNEL staining, Nissl staining, immunofluorescence, morphological analysis, Morris water maze test, Golgi staining, CCK8, flow cytometry in the in vivo and in vitro settings. RESULTS: Following SAH, there was an observed increase in the expression levels of cGAS in rat brain tissue, with peak levels observed at 24 h post-SAH. RU.521 resulted in a reduction of brain water content and blood-brain barrier permeability, leading to an improvement in neurological deficits after SAH. RU.521 had beneficial effects on neuronal apoptosis and microglia activation, as well as improvements in microglial morphology. Additionally, RU.521 prompted a shift in microglial phenotype from M1 to M2. We also noted a decrease in the production of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6, and an increase in the level of the anti-inflammatory cytokine IL-10. Finally, RU.521 treatment was associated with improvements in cognitive function and an increase in the number of dendritic spines in the hippocampus. The therapeutic effects were mediated by the cGAS/STING/NF-κB pathway and were found to be abolished by 2'3'-cGAMP. In vitro, RU.521 significantly reduced apoptosis and neuroinflammation. CONCLUSION: The study showed that SAH leads to neuroinflammation caused by microglial activation, which contributes to early brain injury. RU.521 improved neurological outcomes and reduced neuroinflammation by regulating microglial polarization through the cGAS/STING/NF-κB pathway in early brain injury after SAH. RU.521 may be a promising candidate for the treatment of neuroinflammatory pathology after SAH. Video Abstract.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Animais , Ratos , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/metabolismo , Hemorragia Subaracnóidea/patologia
12.
Adv Sci (Weinh) ; 10(21): e2301428, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37211686

RESUMO

Subarachnoid hemorrhage (SAH) is a devastating subtype of stroke with high mortality and disability rate. Meningeal lymphatic vessels (mLVs) are a newly discovered intracranial fluid transport system and are proven to drain extravasated erythrocytes from cerebrospinal fluid into deep cervical lymph nodes after SAH. However, many studies have reported that the structure and function of mLVs are injured in several central nervous system diseases. Whether SAH can cause mLVs injury and the underlying mechanism remain unclear. Herein, single-cell RNA sequencing and spatial transcriptomics are applied, along with in vivo/vitro experiments, to investigate the alteration of the cellular, molecular, and spatial pattern of mLVs after SAH. First, it is demonstrated that SAH induces mLVs impairment. Then, through bioinformatic analysis of sequencing data, it is discovered that thrombospondin 1 (THBS1) and S100A6 are strongly associated with SAH outcome. Furthermore, the THBS1-CD47 ligand-receptor pair is found to function as a key role in meningeal lymphatic endothelial cell apoptosis via regulating STAT3/Bcl-2 signaling. The results illustrate a landscape of injured mLVs after SAH for the first time and provide a potential therapeutic strategy for SAH based on mLVs protection by disrupting THBS1 and CD47 interaction.


Assuntos
Vasos Linfáticos , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/genética , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Hemorragia Subaracnóidea/patologia , Antígeno CD47 , Transcriptoma/genética , Vasos Linfáticos/patologia , Análise de Sequência de RNA
13.
J Vet Intern Med ; 37(3): 1256-1261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37096918

RESUMO

Ultrasound-guided cervical centesis has gained popularity as a method for collecting cerebrospinal fluid (CSF) from standing horses. There are anecdotal reports of neck stiffness, regional swelling, sensitivity to palpation, and fever after the procedure. We report 2 horses with complications that occurred within days of C1-C2 centesis and ultimately resulted in euthanasia. Both C1-C2 centesis were performed routinely, with CSF cytologic analysis providing no evidence of blood contamination. Post-mortem examination revealed equine degenerative myeloencephalopathy as the primary disorder causing Horse 1's initial neurologic deficits, whereas Horse 2 did not have a distinct lesion explaining the horse's deficits. Both horses had evidence of subarachnoid hemorrhage at or near the centesis site with Wallerian axonal degeneration in the cranial cervical spinal cord. Although hemorrhage with associated axonal degeneration at the cervical centesis site appears to be rare, this complication of C1-C2 centesis should be considered as this technique gains popularity.


Assuntos
Doenças dos Cavalos , Doenças Neurodegenerativas , Hemorragia Subaracnóidea , Cavalos , Animais , Paracentese/veterinária , Hemorragia Subaracnóidea/etiologia , Hemorragia Subaracnóidea/veterinária , Hemorragia Subaracnóidea/patologia , Medula Espinal/patologia , Doenças Neurodegenerativas/veterinária , Ultrassonografia , Doenças dos Cavalos/patologia
14.
Oxid Med Cell Longev ; 2023: 3842493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798684

RESUMO

Subarachnoid hemorrhage (SAH) refers to vascular brain injury mainly from a ruptured aneurysm, which has a high lifetime risk and imposes a substantial burden on patients, families, and society. Previous studies on SAH mainly focused on neurons in gray matter (GM). However, according to literature reports in recent years, in-depth research on the mechanism of white matter (WM) is of great significance to injury and recovery after SAH. In terms of functional recovery after SAH, all kinds of cells in the central nervous system (CNS) should be protected. In other words, it is necessary to protect not only GM but also WM, not only neurons but also glial cells and axons, and not only for the lesion itself but also for the prevention and treatment of remote damage. Clarifying the mechanism of white matter injury (WMI) and repair after SAH is of great importance. Therefore, this present review systematically summarizes the current research on WMI after SAH, which might provide therapeutic targets for treatment after SAH.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Substância Branca , Humanos , Hemorragia Subaracnóidea/patologia , Substância Branca/patologia , Lesões Encefálicas/patologia
15.
Neurol Res ; 45(1): 49-56, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36062543

RESUMO

BACKGROUND: Subarachnoid hemorrhage-induced hydrocephalus (SAIH) can affect the prognosis of subarachnoid hemorrhage (SAH). The relationship between hydromyelia and SAIH has been rarely investigated. This experimental model aimed to identify the pathophysiological changes developed in the SAH and elucidate the relationship between hydromyelia and SAIH. MATERIAL AND METHODS: 25 female rabbits were randomly divided into three groups. The SAH group (n = 15), sham group (n = 5), and control group (n = 5). In the former group, the injection of 0.5 mL/kg of autologous blood was carried out into the cisterna magna on days 0 and 2. All animals were decapitated 21 days thereafter. Histological examinations of the medulla spinalis and brain samples were performed. RESULTS: The mean volumes of the central channel were 1.054, 1.287, and 1.776 mm3 in the control, sham, and SAH groups, respectively (p = 0.028). The mean normal ependymal cell densities were 4.210, 3.602, and 2.923 cells/mm2 in the control, sham, and SAH groups, respectively (p = 0.002). The mean ventricular Evans' indices were 0.31, 0.34, and 0.41, in the control, sham, and SAH groups, respectively (p = 0.006). Basement membrane rupture, desquamated ependymal cells, and central channel occlusion were observed on histological examinations of the SAH group. CONCLUSIONS: Subependymal basement membrane destruction, blood cell accumulation on it, ependymal cell desquamation, increased cerebrospinal fluid (CSF) secretion, and increased ICP in the central channel that causes hydromyelia. When these pathological changes are chronically apparent, they may reflect on CSF pathways and cause permanent SAIH. Preventing long-time SAH-induced hydromyelia is believed to reduce the high rate of treatment-requiring SAIH.


Assuntos
Hidrocefalia , Hemorragia Subaracnóidea , Animais , Feminino , Coelhos , Encéfalo/patologia , Modelos Animais de Doenças , Hidrocefalia/etiologia , Medula Espinal/patologia , Hemorragia Subaracnóidea/patologia
16.
Histochem Cell Biol ; 159(1): 91-114, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36153470

RESUMO

The multifaceted nature of subarachnoid hemorrhage (SAH) pathogenesis is poorly understood. To date, no pharmacological agent has been found to be efficacious for the prevention of brain injury when used for acute SAH intervention. This study was undertaken to evaluate the beneficial effects of low-dose neuroprotective agent minocycline on brain microvascular ultrastructures that have not been studied in detail. We studied SAH brain injury using an in vivo prechiasmatic subarachnoid hemorrhage rodent model. We analyzed the qualitative and quantitative ultrastructural morphology of capillaries and surrounding neuropil in the rodent brains with SAH and/or minocycline administration. Here, we report that low-dose minocycline (1 mg/kg) displayed protective effects on capillaries and surrounding cells from significant SAH-induced changes. Ultrastructural morphology analysis revealed also that minocycline stopped endothelial cells from abnormal production of vacuoles and vesicles that compromise blood-brain barrier (BBB) transcellular transport. The reported ultrastructural abnormalities as well as neuroprotective effects of minocycline during SAH were not directly mediated by inhibition of MMP-2, MMP-9, or EMMPRIN. However, SAH brain tissue treated with minocycline was protected from development of other morphological features associated with oxidative stress and the presence of immune cells in the perivascular space. These data advance the knowledge on the effect of SAH on brain tissue ultrastructure in an SAH rodent model and the neuroprotective effect of minocycline when administered in low doses.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Hemorragia Subaracnóidea , Ratos , Animais , Hemorragia Subaracnóidea/tratamento farmacológico , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/patologia , Minociclina/farmacologia , Minociclina/uso terapêutico , Roedores , Ratos Sprague-Dawley , Células Endoteliais , Encéfalo/patologia , Barreira Hematoencefálica/patologia , Lesões Encefálicas/complicações , Lesões Encefálicas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças
17.
Semin Immunopathol ; 45(3): 281-294, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36346451

RESUMO

Acute ischaemic and haemorrhagic stroke account for significant disability and morbidity burdens worldwide. The myeloid arm of the peripheral innate immune system is critical in the immunological response to acute ischaemic and haemorrhagic stroke. Neutrophils, monocytes, and dendritic cells (DC) contribute to the evolution of pathogenic local and systemic inflammation, whilst maintaining a critical role in ongoing immunity protecting against secondary infections. This review aims to summarise the key alterations to myeloid immunity in acute ischaemic stroke, intracerebral haemorrhage (ICH), and subarachnoid haemorrhage (SAH). By integrating clinical and preclinical research, we discover how myeloid immunity is affected across multiple organ systems including the brain, blood, bone marrow, spleen, and lung, and evaluate how these perturbations associate with real-world outcomes including infection. These findings are placed in the context of the rapidly developing field of human immunology, which offers a wealth of opportunity for further research.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Hemorragia Subaracnóidea , Humanos , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral Hemorrágico/complicações , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/patologia
18.
J Neurol Surg A Cent Eur Neurosurg ; 84(2): 167-173, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36302519

RESUMO

BACKGROUND: The data on handling of spontaneous, nontraumatic subarachnoid hemorrhage (SAH) with negative initial digital subtraction angiography (DSA) are still inconclusive. The intention of this study was to evaluate the requirement of repeat DSA in patients with negative initial DSA and to compare the clinical outcomes of these cases. METHODS: In a retrospective study, we reviewed patients with SAH and negative initial DSA treated in our department from January 2006 until December 2017. The patients were divided according to an established radiographic classification into perimesencephalic (pm) and nonperimesencephalic (npm) SAH. An interventional neuroradiologist and a neurosurgeon reviewed all DSA scans. RESULTS: In all, 52 patients with negative initial DSA, comprising 36 (69.2%) patients with pm and 16 (30.8%) patients with npm bleeding pattern, were included. All patients underwent a second and 23 of these patients underwent a third DSA. In these 23 patients, subarachnoid blood distribution in the initial computed tomography (CT) scan was suspicious for the presence of aneurysm. In total, two aneurysms were detected during the second DSA (diagnostic yield: 3.85%). Both were in the pm group (diagnostic yield: 5.6%). The second repeat DSA did not show any causative vascular lesion. Complications after the DSA occurred in only 2 of 127 patients (1.6%). The rate of complications concerning vasospasm (pm 52.8%, npm 56.3%), hydrocephalus (pm 47.2%, npm 50%), and the need for temporary or permanent shunt (pm 44.4%, npm 50%) was similar in both groups and there was no statistically significant difference. CONCLUSION: Repeat DSA after negative initial DSA in pm SAH had a diagnostic yield of 5.6%. However, a second repeat DSA cannot be recommended in case of SAH with initial negative DSA. The pm SAH should not be underrated concerning the occurrence of complications and cared with a high level of surveillance.


Assuntos
Aneurisma , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/patologia , Angiografia Digital/métodos , Estudos Retrospectivos , Angiografia Cerebral/métodos
19.
Transl Stroke Res ; 14(6): 955-969, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36324028

RESUMO

Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is characterized by rapid development of neuron apoptosis and dysregulated inflammatory response. Microglia efferocytosis plays a critical role in the clearance of apoptotic cells, attenuation of inflammation, and minimizing brain injury in various pathological conditions. Here, using a mouse SAH model, we aim to investigate whether microglia efferocytosis is involved in post-SAH inflammation and to determine the underlying signaling pathway. We hypothesized that TAM receptors and their ligands regulate this process. To prove our hypothesis, the expression and cellular location of TAM (Tyro3, Axl, and Mertk) receptors and their ligands growth arrest-specific 6 (Gas6) and Protein S (ProS1) were examined by PCR, western blots, and fluorescence immunostaining. Thirty minutes after SAH, mice received an intraventricular injection of recombinant Gas6 (rGas6) or recombinant ProS1 (rPros1) and underwent evaluations of inflammatory mediator expression, neurological deficits, and blood-brain barrier integrity at 24 h. Microglia efferocytosis of apoptotic neurons was analyzed in vivo and in vitro. The potential mechanism was determined by inhibiting or knocking down TAM receptors and Rac1 by specific inhibitors or siRNA. SAH induced upregulation of Axl and its ligand Gas6. The administration of rGas6 but not rPros1 promoted microglia efferocytosis, alleviated inflammation, and ameliorated SAH-induced BBB breakdown and neurological deficits. The beneficial effects of rGas6 were arrogated by inhibiting or knocking down Axl and Rac1. We concluded that rGas6 attenuated the development of early brain injury in mice after SAH by facilitating microglia efferocytosis and preventing inflammatory response, which is partly dependent on activation of Axl and Rac1.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Animais , Microglia/patologia , Hemorragia Subaracnóidea/patologia , Transdução de Sinais , Inflamação/metabolismo , Modelos Animais de Doenças
20.
J Neuroinflammation ; 19(1): 312, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36566220

RESUMO

BACKGROUND: Neuroinflammation and neuronal apoptosis are closely associated with a poor prognosis in patients with subarachnoid hemorrhage (SAH). We investigated the role of C-C motif chemokine receptor 2 (CCR2) in SAH. METHODS: Pre-processed RNA-seq transcriptome datasets GSE167110 and GSE79416 from the Gene Expression Omnibus (GEO) database were screened for genes differentially expressed between mice with SAH and control mice, using bioinformatics analysis. The endovascular perforation model was performed to establish SAH. RS504393 (a CCR2 antagonist) and LY294002 (PI3K inhibitor) were administered to explore the mechanism of neuroinflammation after SAH. SAH grading, neurological scoring, brain water content and blood-brain barrier (BBB) permeability determination, enzyme-linked immunosorbent assay (ELISA), western blotting, and immunofluorescence were performed. An in vitro model of SAH was induced in H22 cells by hemin treatment. The protective mechanism of CCR2 inhibition was studied by adding RS504393 and LY294002. Clinical cerebrospinal fluid (CST) samples were detected by ELISA. RESULTS: Expression of CCR2 was upregulated in both datasets and was identified as a hub gene. CCR2 expression was significantly upregulated in the cytoplasm of neurons after SAH, both in vitro and in vivo. RS significantly reduced the brain water content and blood-brain barrier permeability, alleviated neuroinflammation, and reduced neuronal apoptosis after SAH. Additionally, the protective effects of CCR2 inhibition were abolished by LY treatment. Finally, the levels of CCR2, inflammatory factors, and apoptotic factors were elevated in the CSF of patients with SAH. CCR2 levels were associated with patient outcomes at the 6-month follow-up. CONCLUSION: CCR2 expression was upregulated in both in vitro and in vivo SAH models. Additionally, inhibition of CCR2, at least partly through the PI3K/AKT pathway, alleviated neuroinflammation and neuronal apoptosis in vivo and in vitro. CCR2 levels in the CSF have a moderate diagnostic value for 6-month outcome prediction in patients with SAH.


Assuntos
Apoptose , Doenças Neuroinflamatórias , Proteínas Proto-Oncogênicas c-akt , Receptores CCR2 , Hemorragia Subaracnóidea , Animais , Camundongos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/etiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CCR2/antagonistas & inibidores , Transdução de Sinais , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...